speasy.products package
- class speasy.products.Catalog(name: str, meta: dict = None, events: List[Event] = None)[source]
Bases:
SpeasyProduct
The Catalog class allows to manipulate a goup of events like a simple Python list of Event plus some meta data.
- Attributes:
- namestr
Catalog name
- metadict
All additional Catalog meta data
Methods
append:
Append an Event or a list of Event to the end of the Catalog
pop:
Remove and return Event at index (default last)
Examples
>>> import speasy >>> from speasy.products import Catalog, Event >>> my_catalog = Catalog(name='MyCatalog', meta={'tags':['demo', 'docstrings']}, events=[]) >>> my_catalog.append(Event('2018-01-01', '2018-01-02', meta={'name':'My first event!'})) >>> my_catalog += Event('2019-01-01', '2019-01-02', meta={'name':'My second event!'}) >>> for e in my_catalog: ... print(e) ... <Event: 2018-01-01T00:00:00+00:00 -> 2018-01-02T00:00:00+00:00 | {'name': 'My first event!'}> <Event: 2019-01-01T00:00:00+00:00 -> 2019-01-02T00:00:00+00:00 | {'name': 'My second event!'}>
- append(events: Event) None [source]
Append an Event or a list of Event to the end of the Catalog.
- Parameters:
- eventsEvent or List[Event]
- Raises:
- TypeError
If events is neither an Event or a list of Event
See also
- meta
- name
- class speasy.products.DataContainer(values: array, meta: Dict = None, name: str = None, is_time_dependent: bool = True)[source]
Bases:
DataContainerProtocol
[DataContainer
]- property dtype
- static empty_like(other: DataContainer) DataContainer [source]
- static from_dictionary(dictionary: ~typing.Dict[str, str | ~typing.Dict[str, str] | ~typing.List], dtype=<class 'numpy.float64'>) DataContainer [source]
- property meta
- property name
- property ndim
- static ones_like(other: DataContainer) DataContainer [source]
- static reserve_like(other: DataContainer, length: int = 0) DataContainer [source]
- reshape(new_shape) DataContainer [source]
- select(indices, inplace=False) DataContainer [source]
- property shape
- unit_applied(unit: str = None) DataContainer [source]
- property values: array
- static zeros_like(other: DataContainer) DataContainer [source]
- class speasy.products.Dataset(name: str, variables: dict, meta: dict)[source]
Bases:
SpeasyProduct
A Dataset is basically a collection of SpeasyVariables
- meta
- name
- time_range() DateTimeRange | None [source]
- variables
- class speasy.products.Event(start_time: datetime, stop_time: datetime, meta=None)[source]
Bases:
DateTimeRange
The Event class is a DatetimeRange with some meta data. It is supposed to be used with Catalog
- Attributes:
- start_timedatetime.datetime
- stop_timedatetime.datetime
- metadict
Additional event data
Notes
This class support the same operations as a speasy.common.datetime_range.DateTimeRange.
- meta
- class speasy.products.SpeasyVariable(axes: List[VariableAxis], values: DataContainer, columns: List[str] | None = None)[source]
Bases:
SpeasyProduct
SpeasyVariable object. Base class for storing variable data.
- Attributes:
- time: numpy.ndarray
time vector (x-axis data)
- values: numpy.ndarray
data
- meta: Optional[dict]
metadata
- columns: Optional[List[str]]
column names, might be empty for spectrograms or 3D+ data
- axes: List[np.ndarray]
Collection composed of time axis plus eventual additional axes according to values’ shape
- axes_labels: List[str]
Axes names
- unit: str
Values physical unit
- name: str
SpeasyVariable name
- nbytes: int
memory usage in bytes
- fill_value: Any
fill value if found in meta-data
- valid_range: Tuple[Any, Any]
valid range if found in meta-data
Methods
view:
Returns a view of the current variable within the desired
index_range
to_dataframe:
Converts the variable to a pandas.DataFrame object
from_dataframe:
Builds a SpeasyVariable from a pandas.DataFrame object
to_astropy_table:
Converts the variable to an astropy.table.Table
unit_applied:
Returns a copy where values are astropy.units.Quantity
filter_columns:
Returns a copy only containing selected columns
replace_fillval_by_nan:
Returns a SpeasyVaraible with NaN instead of fill value if fill value is set in meta data
plot:
Plot the data with matplotlib by default
to_dictionary:
Converts a SpeasyVariable to a Python dictionary, mostly used for serialization purposes
copy:
Returns a copy
- property axes: List[VariableTimeAxis]
SpeasyVariable axes, axis 0 is always a VariableTimeAxis, there should be the same number of axes than values dimensions
- Returns:
- List[VariableTimeAxis or VariableAxis]
list of variable axes
- property axes_labels: List[str]
Axes names respecting axes order
- Returns:
- List[str]
list of axes names
- clamp_with_nan(inplace=False, valid_min=None, valid_max=None) SpeasyVariable [source]
Replaces values outside valid range by NaN, valid range is taken from metadata fields “VALIDMIN” and “VALIDMAX”
- Parameters:
- inplacebool, optional
Modifies source variable when true else modifies and returns a copy, by default False
- valid_minFloat, optional
Optional minimum valid value, takes metadata field “VALIDMIN” if not provided, by default None
- valid_maxFloat, optional
Optional maximum valid value, takes metadata field “VALIDMAX” if not provided, by default None
- Returns:
- SpeasyVariable
source variable or copy with values clamped by NaN
See also
replace_fillval_by_nan
replaces fill values by NaN
sanitized
removes fill and invalid values
- property columns: List[str]
SpeasyVariable columns names when it makes sense
- Returns:
- List[str]
list of columns names
- copy(name=None) SpeasyVariable [source]
Makes a deep copy the variable
- Parameters:
- name: str, optional
new variable name, by default None, keeps the same name
- Returns:
- SpeasyVariable
deep copy the variable
- property dtype
- static empty_like(other: SpeasyVariable) SpeasyVariable [source]
Create a SpeasyVariable with the same properties than given variable but unset values
- Parameters:
- otherSpeasyVariable
variable used as reference for shape and meta-data
- Returns:
- SpeasyVariable
a SpeasyVariable similar to given one
- property fill_value: Any | None
SpeasyVariable fill value if found in meta-data
- Returns:
- Any
fill value if found in meta-data
- filter_columns(columns: List[str]) SpeasyVariable [source]
Builds a SpeasyVariable with only selected columns
- Parameters:
- columnsList[str]
list of column names to keep
- Returns:
- SpeasyVariable
a SpeasyVariable with only selected columns
- static from_dataframe(df: DataFrame) SpeasyVariable [source]
Load from pandas.DataFrame object.
- Parameters:
- df: pandas.DataFrame
Input DataFrame to convert
- Returns:
- SpeasyVariable:
Variable created from DataFrame
See also
to_dataframe
exports a SpeasyVariable to a pandas DataFrame
to_astropy_table
exports a SpeasyVariable to an astropy.Table object
- static from_dictionary(dictionary: Dict[str, object]) SpeasyVariable [source]
Builds a SpeasyVariable from a well formed dictionary
- Returns:
- SpeasyVariable or None
See also
to_dictionary
exports SpeasyVariable to dictionary
- property nbytes: int
SpeasyVariable’s values and axes memory usage
- Returns:
- int
number of bytes used to store values and axes
- property ndim
- static ones_like(other: SpeasyVariable) SpeasyVariable [source]
Create a SpeasyVariable with the same properties than given variable but filled with ones
- Parameters:
- otherSpeasyVariable
variable used as reference for shape and meta-data
- Returns:
- SpeasyVariable
a SpeasyVariable similar to given one filled with ones
- property plot
Plot the variable, tries to do its best to detect variable type and to populate plot labels
- replace_fillval_by_nan(inplace=False) SpeasyVariable [source]
Replaces fill values by NaN, non float values are automatically converted to float. Fill value is taken from metadata field “FILLVAL”
- Parameters:
- inplacebool, optional
Modifies source variable when true else modifies and returns a copy, by default False
- Returns:
- SpeasyVariable
source variable or copy with fill values replaced by NaN
See also
clamp_with_nan
replaces values outside valid range by NaN
sanitized
removes fill and invalid values
- static reserve_like(other: SpeasyVariable, length: int = 0) SpeasyVariable [source]
Create a SpeasyVariable of given length and with the same properties than given variable but unset values
- Parameters:
- otherSpeasyVariable
variable used as reference for shape and meta-data
- lengthint, optional
output variable length, by default 0
- Returns:
- SpeasyVariable
a SpeasyVariable similar to given one of given length
- sanitized(drop_fill_values=True, drop_out_of_range_values=True, drop_nan_and_inf=True, inplace=False, valid_min=None, valid_max=None) SpeasyVariable [source]
Returns a copy of the variable with fill values and invalid values removed
- Parameters:
- drop_fill_valuesbool, optional
Remove fill values, by default True
- drop_out_of_range_valuesbool, optional
Remove values outside valid range, by default True
- drop_nan_and_infbool, optional
Remove NaN and Infinite values, by default True
- inplacebool, optional
Modifies source variable when true else modifies and returns a copy, by default False
- valid_minFloat, optional
Minimum valid value, takes metadata field “VALIDMIN” if not provided, by default None
- valid_maxFloat, optional
Maximum valid value, takes metadata field “VALIDMAX” if not provided, by default None
- Returns:
- SpeasyVariable
source variable or copy with fill and invalid values removed
See also
replace_fillval_by_nan
replaces fill values by NaN
clamp_with_nan
replaces values outside valid range by NaN
- property shape
- property time: array
Time axis values, equivalent to var.axes[0].values
- Returns:
- np.array
time axis values as numpy array of datetime64[ns]
- to_astropy_table() Table [source]
Convert the variable to an astropy.Table object.
- Parameters:
- datetime_index: bool
boolean indicating that the index is datetime
- Returns:
- astropy.Table:
Variable converted to astropy.Table
See also
from_dataframe
builds a SpeasyVariable from a pandas DataFrame
to_dataframe
exports a SpeasyVariable to a pandas DataFrame
- to_dataframe() DataFrame [source]
Convert the variable to a pandas.DataFrame object.
- Returns:
- pandas.DataFrame:
Variable converted to Pandas DataFrame
See also
from_dataframe
builds a SpeasyVariable from a pandas DataFrame
to_astropy_table
exports a SpeasyVariable to an astropy.Table object
- to_dictionary(array_to_list=False) Dict[str, object] [source]
Converts SpeasyVariable to dictionary
- Parameters:
- array_to_listbool, optional
Converts numpy arrays to Python Lists when true, by default False
- Returns:
- Dict[str, object]
See also
from_dictionary
builds variable from dictionary
- property unit: str
SpeasyVariable unit if found in meta-data
- Returns:
- str
unit if found in meta-data
- unit_applied(unit: str = None, copy=True) SpeasyVariable [source]
Returns a SpeasyVariable with given or automatically found unit applied to values
- Parameters:
- unitstr or None, optional
Use given unit or gets one from variable metadata, by default None
- copybool, optional
Preserves source variable and returns a modified copy if true, by default True
- Returns:
- SpeasyVariable
SpeasyVariable identic to source one with values converted to astropy.units.Quantity according to given or found unit
See also
unit
returns variable unit if found in meta-data
Notes
This interface assume that there is only one unit for the whole variable since all stored in the same array
- property valid_range: Tuple[Any, Any] | None
SpeasyVariable valid range if found in meta-data
- Returns:
- Tuple[Any, Any]
valid range if found in meta-data
- property values: array
SpeasyVariable values
- Returns:
- np.array
SpeasyVariable values
- view(index_range: slice | ndarray) SpeasyVariable [source]
Return view of the current variable within the desired
index_range
.- Parameters:
- index_range: slice
index range
- Returns:
- speasy.common.variable.SpeasyVariable
view of the variable on the given range
- static zeros_like(other: SpeasyVariable) SpeasyVariable [source]
Create a SpeasyVariable with the same properties than given variable but filled with zeros
- Parameters:
- otherSpeasyVariable
variable used as reference for shape and meta-data
- Returns:
- SpeasyVariable
a SpeasyVariable similar to given one filled with zeros
- class speasy.products.TimeTable(name: str, meta: dict = None, dt_ranges: List[DateTimeRange] = None)[source]
Bases:
SpeasyProduct
A TimeTable is basically a collection of DateTimeRange
- append(dt_range: DateTimeRange)[source]
- meta
- name
- class speasy.products.VariableAxis(values: array = None, meta: Dict = None, name: str = '', is_time_dependent: bool = False, data: DataContainer = None)[source]
Bases:
DataContainerProtocol
[VariableAxis
]- static from_dictionary(dictionary: Dict[str, str | Dict[str, str] | List], time=None) VariableAxis [source]
- static reserve_like(other: VariableAxis, length: int = 0) VariableAxis [source]
- select(indices, inplace=False) VariableAxis [source]
- property shape
- property values: array
- view(index_range: slice | ndarray) VariableAxis [source]
- class speasy.products.VariableTimeAxis(values: array = None, meta: Dict = None, name: str = 'time', data: DataContainer = None)[source]
Bases:
DataContainerProtocol
[VariableTimeAxis
]- static from_dictionary(dictionary: Dict[str, str | Dict[str, str] | List], time=None) VariableTimeAxis [source]
- static reserve_like(other: VariableTimeAxis, length: int = 0) VariableTimeAxis [source]
- select(indices, inplace=False) VariableTimeAxis [source]
- property shape
- property values: array
- view(index_range: slice | ndarray) VariableTimeAxis [source]
Submodules
- speasy.products.base_product module
- speasy.products.catalog module
- speasy.products.dataset module
- speasy.products.timetable module
- speasy.products.variable module
SpeasyVariable
SpeasyVariable.axes
SpeasyVariable.axes_labels
SpeasyVariable.clamp_with_nan()
SpeasyVariable.columns
SpeasyVariable.copy()
SpeasyVariable.dtype
SpeasyVariable.empty_like()
SpeasyVariable.fill_value
SpeasyVariable.filter_columns()
SpeasyVariable.from_dataframe()
SpeasyVariable.from_dictionary()
SpeasyVariable.meta
SpeasyVariable.name
SpeasyVariable.nbytes
SpeasyVariable.ndim
SpeasyVariable.ones_like()
SpeasyVariable.plot
SpeasyVariable.replace_fillval_by_nan()
SpeasyVariable.reserve_like()
SpeasyVariable.sanitized()
SpeasyVariable.shape
SpeasyVariable.time
SpeasyVariable.to_astropy_table()
SpeasyVariable.to_dataframe()
SpeasyVariable.to_dictionary()
SpeasyVariable.unit
SpeasyVariable.unit_applied()
SpeasyVariable.valid_range
SpeasyVariable.values
SpeasyVariable.view()
SpeasyVariable.zeros_like()
from_dataframe()
from_dictionary()
merge()
same_time_axis()
to_dataframe()
to_dictionary()