This page was generated by
nbsphinx from
docs/examples/CDAWeb.ipynb.
Interactive online version:
CDAWeb first steps
Only for Google Colab users:
[ ]:
%pip install --upgrade ipympl speasy
[ ]:
try:
from google.colab import output
output.enable_custom_widget_manager()
except:
print("Not running inside Google Collab")
For all users:
[1]:
import speasy as spz
%matplotlib widget
cda_tree = spz.inventories.tree.cda
# Use this instead if you are not using jupyterlab yet
#%matplotlib notebook
import matplotlib.pyplot as plt
from datetime import datetime
A simple example with MMS FGM data
[5]:
fig = plt.figure()
mms3_fgm_b_gse_srvy = spz.get_data(cda_tree.MMS.MMS3.FGM.MMS3_FGM_SRVY_L2.mms3_fgm_b_gse_srvy_l2_clean, "2015-09-09T08:40",
"2015-09-09T08:55")
mms3_fgm_b_gse_srvy.plot()
plt.tight_layout()
plt.show()
Replacing fill values by NaN and filtering components
Let’s look at the data as we get it on an interval where there are some fill values
[6]:
fig = plt.figure()
mms1_fgm_b_gse_srvy = spz.get_data(cda_tree.MMS.MMS1.FGM.MMS1_FGM_SRVY_L2.mms1_fgm_b_gse_srvy_l2_clean, "2019-01-01",
"2019-01-03")
mms1_fgm_b_gse_srvy.plot()
plt.tight_layout()
plt.show()
Now let’s replace fill values by NaNs
[7]:
fig = plt.figure()
gs = fig.add_gridspec(2, hspace=0)
ax = gs.subplots(sharex=True, sharey=True)
mms1_fgm_b_gse_srvy = spz.get_data(cda_tree.MMS.MMS1.FGM.MMS1_FGM_SRVY_L2.mms1_fgm_b_gse_srvy_l2_clean, "2019-01-01",
"2019-01-03")
mms1_fgm_b_gse_srvy["Bx GSE", "By GSE", "Bz GSE"].replace_fillval_by_nan().plot(ax=ax[0])
mms1_fgm_b_gse_srvy["Bt"].replace_fillval_by_nan().plot(ax=ax[1])
plt.tight_layout()
plt.show()
Another example with an MMS FPI spectrogram
[9]:
mms1_dis_energyspectr_omni_fast = spz.get_data(
cda_tree.MMS.MMS1.DIS.MMS1_FPI_FAST_L2_DIS_MOMS.mms1_dis_energyspectr_omni_fast, "2019-01-02T15:30",
"2019-01-02T20")
plt.figure()
mms1_dis_energyspectr_omni_fast.plot["matplotlib"].colormap(cmap='viridis')
plt.tight_layout()
plt.show()